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CO,-Water-Rock Interactions in
Geologic Storage

* How well are we presently able to simulate CO, fate
and transport in reservoir filling?

e Uncertainties in multiphase reactive transport:
- Geological model — geometry, heterogeneity
- Two phase flow — rel perm, capillary pressure
- Phase behavior — solubility, comp.effects
- Water rock interactions — thermodynamics/kinetics

 Focus here: How well do we represent these
geochemical reactions in our simulations?
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How well do we represent these
geochemical reactions in our simulations?

e Kinetics of water rock interactions
e Substrate for nucleation and growth
 Mineralogical compositions

Utsira case w/parameter sensitivity
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Why is dawsonite often absent in CO, charged reservoirs?

eDawsonite is less abundant in natural analogues (except
where the aquifers are highly alkaline or where large
concentrations of Na-feldspar have been locally replaced)

*The answer on the differences between observed and
simulated dawsonite growth may be found in the way the
numerical codes solve for the thermodynamic and kinetic
stability.

*the classical way of simulating mineral growth is by using a
single-affinity-term TST-derived rate law (Transition State
Theory)

fails to capture the differences in mechanisms of dissolution
and growth Geosciences
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Commonly used TST derived rate expressions
used both for dissolution and precipitation

r=ks| [a™exp —% f(AG)

f(AG)=1—-exp AG

oRT
S =/Mn

where 6 is the Brunauer-Emmet-Teller (BET) specific surface area, M is the molar weight
and n is the number of moles of the mineral,

whereas the reactive surface area for precipitation of new minerals often is set equal to
1% of the total sediment surface area. This number, representing a fraction of the total

surface area, has no direct physical meaning but is in the range of what have been used
in other numerical studies on mineral formation during CO, storage (e.g., Gaus et al.,

2005; Johnson et al., 2004)
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Precipitation rate considerations
including a critical super-saturation

Recent work on carbonate reactivity strongly suggest that
precipitation rates may be orders of magnitude lower than
those estimated from corresponding dissolution rates by TST
(e.g., compare Pokrovsky et al., 2009; Saldi et al., 2009)

Introduced a critical super-saturation that corresponds to the
nucleation barrier at low temperatures and applied a second
order affinity dependence as seen for spiral growth
(Hellevang et al., 2009)

Reactive surface area for growth of new product minerals,
expressed through an initial area for nucleation and growth.
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Even at very high supersatutations dawsonite rapidly stops precipitating in
measurable amounts as soon as the temperature drops below 70-90°C (Duan et

al., 2005) Geosciences
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The difference in calculated precipitation rates of magnesite
1) using the traditional TST-derived equation based on the far-from-equilibrium

dissolution rate data from Pokrovsky et al. (2009),and
2) calculation according to critical supersaturation from the experimental data by Saldi et

al. (2009)
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Precipitation rate constants smaller and
including a critical super-saturation

kySqai exp(— ie_llf‘ j{l— Q} if Q<1 undersaturation condition
r=40 If 1<Q<Q_supersat lower than critical
r-k S a;" exp(— ia_‘rp j{QC -1 if Q,<Q  supersaturation over critical

.

superscript o is a coefficient that depends on the growth mechanism, where o =1
results from transport or adsorption controlled growth and @w = 2 from spiral
growth (Nielsen, 1983), and tis -1 or 1 for @ = 2 or 1 respectively.

S, = a+ fMn Sy = AMn

where « is the reactive surface area for growth for the precipitating mineral.
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Utsira case revisited
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Redox conditions following the approach of Helgeson & Shock
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Utsira mineralogy

Mineral fractions
included in the model
(Chadwick et al.,
2004). Total amount
of clay minerals is
assumed to be 4% for
the base case.

Mineral

Weight%

Primary Base 0% 2% 1% 2%

case |glauconite | glauconite | smectite | smectite
Quartz 725 73.5 715 72.5 711
Chalcedony 0 0 0 0 0
Albite 3.0 3.0 3.0 3.0 3.0
K-feldspar 13.0 13.0 13.0 13.0 13.0
Glauconite D | 1.0 0.0 20 1.0 1.0
Clinochlore- 0.4 0.4 0.4 0.4 0.4
14A
Smectite- 0.6 0.6 0.6 1.0 2.0
high-Fe-Mg
Kaolinite 1.0 1.0 1.0 1.0 1.0
Muscovite 2.0 2.0 2.0 2.0 2.0
Magnetite 0.1 0.1 0.1 0.1 0.1
Pyrite 0.4 0.4 0.4 0.4 0.4
Calcite 6.0 6.0 6.0 6.0 6.0
Secondary
Ankerite 0 0 0 0 0
Siderite 0 0 0 0 0
Dolomite 0 0 0 0 0
Magnesite 0 0 0 0 0
Dawsonite 0 0 0 0 0

Geosciences

University of Oslo




Kinetic parameters used for rate calculations

Mineral KT "k, *a(m’) | B BET | °Q, References
(mol/m’s) (mol/m®s) (m*/g)
Quartz 408x107" [4.08x107* |1 100 | Testeretal., (1994)
Albite 2.88x 10" [ 2.88x107"° 1 0.1 1 Brantley (2008)
K-feldspar 511x10"° [ 511x10™ |1 0.11 1 Brantley (2008)
Gautier et al., (1994)
Glauconite 4788 x10 [ 4.788x 10" |1 0.0178 | 1 Tardy et al.,(1994)
10 Aagaard et al.,(2004)
Clinochlore-14A [ 2.8x10™ [28x10™ 1 1.6 1 Brandt et al., (2003)
Nagy (1995)
Smectite-h-Fe-Mg | 5.59 x 10" [ 559 x 10™ | 1 50 1 Amram and Ganor (2005)
Golubeyv at al.,(2006)
Kaolinite 113.85 x 10° 921x 10" 1 1 Yang and Steefel (2008)
Muscovite 763x10™ | 763x10™ |1 0.68 1 Oelkers et al., (2008)
Magnetite 2398 x 107 | 2.398 x 10° | 1 0.102 |1 White ot al..(1994)
Pyrite 262x10° |2.62x10° 1 0.051 1 Williamson and Rimstidt
(1994)
Calcite Equilibrium | Equilibrium - - -
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Kinetic parameters used for precipitation rate calculations

Mineral K, "k, a(m’) | B BET | °Q, | References
(mol/m’s) | (mol/m’s) (m*/g)
Chalcedony 408x10™ [4.08x10™ [0.1- 0.0225 | 1 Tester et al., (1994)
100
Calcite Equilibrium | Equilibrium - - -
Ankerite 1.27x10" [1.27x10°*° | 0.1- 0.016 | 1- As dolomite
100 10
Siderite 276x 10" [ 2.76x107*° [ 0.1- 0175 |1- Golubev et al., (2009)
100 10
Magnesite 9.04x10™ [1.96x10™* [0.1- 0127 |1- Pokrovsky et al., (2009)
: 100 10 | Saldi etal.,(2009)
Dolomite 1.27x10" [6.03x10°*% [ 0.1- 0.016 |[1- Pokrovsky et al., (2005; 2009)
100 10 Arvidson & Mackenzie(1997)
Dawsonite 485x10° |[4.85x10™*]0.1- 9.8 1- Declercq et al. (2009)
100 10
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Utsira case revisited: mineralogical changes during storage
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Changing mass fraction of minerals during interaction of the formation water
and the sediments with CO, injected at 100 bars (base case). Note rapid
dissolution of reactive clay minerals
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Utsira case
revisited:
carbonate
reactions

Carbonate minerals and
CO, trapped in solid
phase in the base case
where glauconite is 1%.

CO, is trapped in the
three carbonate minerals
ankerite, dolomite and
dawsonite during 10 000
years of CO, sequestation
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Utsira case revisited: Porosity changes due to
mineral reactions
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Sensitivity of carbonate formation on the abundance of clays

Gram CO2 trapped in minerals

Moles of total CO2 trapped
in solidphases

per1 liter of porosity( g)
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Total CO, trapped in carbonate minerals is proportional to the amount of
glauconite and smectite. The smectite-dissolution reaction is slightly slower than

glauconite at 37 °C
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Sensitivity of carbonate formation on a
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a.
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rather constant.
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Effect of @ (p,,sonite) ON Other mineral reactions
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Effect of & p,.s0nite) ON albite reactions
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Summary

The classical way of simulating mineral growth in CO, charged reservoirs by
using a single-affinity-term TST-derived rate law fails to capture the
difference in rate properties between under- and supersaturated systems

The Utsira case simulations were run over a period of 10000 years.

The main simulation results included dissolution of glauconite, smectite,
chlorite, muscovite and albite, with precipitation of the carbonates siderite,
ankerite, and minor dawsonite, as well as kaolinite, silica (either chalcedony
or quartz), and K-feldspar. Resulting porosity changes were minimal.

Ankerite and dolomite formed rather early as a function of reactive clay
mineral dissolution, while the formation of dawsonite was restricted to
considerable longer reaction time.

The uncertainties in the simulations are specially connected with initial
mineral abundances, specially clay minerals.
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